Published Books
Posted by
Ekeland variational principle
with
generalizations
and
variants
CONTENTS
Introduction 1
Chapter I. Ekeland variational principle 3
1 Ekeland priciple in complete metric spaces 5
Several applications of Ekeland principle 30
2 Ekeland principle versus equivalent theorems 63
A. Ekeland principle versus the Drop theorem and the Flower
Petal theorem 63
Support functional and support point for closed convex sets 71
The surjectivity of nonlinear operators 76
B. Ekeland principle versus Caristi - Kirk theorem 81
C. Ekeland principle versus Takahashi theorem, Caristi - Kirk
theorem and Oettli - Théra theorem 83
D. Siegel theorem 88
3 Ekeland principle in Banach spaces 95
- derivative 105
4 Palais - Smale type conditions 113
(PS)c 114
(PS)c, F 117
Critical points and weak solutions for an elliptic type equation 120
5 Subdifferential calculus 125
A. Subderivative 125
B. Superderivative 141
C. Directional derivative 141
D. - subderivative and - superderivative 147
E. The property (H) and the Banach space D (X) 149
F. Clarke derivative 153
G. Clarke subderivative 156
Clarke subderivative 156
Strict derivative of Hadamard type 162
Rules of subdifferential calculus 166
H. Critical points for nondifferentiable functionals 178
I. Mathematical programming 185
6 Variational theorems of minimax type in Banach spaces 187
Minimax theorem I 187
Minimax theorem II 197
Mountain pass theorem and Saddle point theorem for locally
Lipschitz functions 211
Minimax theorem III 218
7 Variational theorems of minimax type on Finsler manifolds 225
Minimax theorem I 229
Minimax theorem II (strong form) 234
Ljusternik - Schnirelmann theorem 245
Minimax theorem III (relaxed boundary conditions) 249
Relaxed Mountain pass and Saddle point theorems 255
Critical orbits of the real periodic functionals 259
8 Ekeland principle for vector - valued functions and minimal
points in product spaces 271
Preliminaries of affine geometry 271
Minimal point theorem I 275
Minimal point theorem II 279
Minimal point theorem III 281
Minimal point theorem IV 288
9 Other variants of Ekeland principle 295
A. Vectorial variant of Ekeland principle 295
B. Vectorial variant of Ekeland principle 305
C. Vectorial variant of Ekeland principle 310
D. Vectorial generalization of the Ekeland and Caristi - Kirk
theorems 314
E. Multivalued variant of Ekeland principle 321
F. Multivalued variants of Ekeland principle 328
G. Ekeland principle in sequentially complete locally convex
spaces 339
H. Ekeland principle in locally complete locally convex spaces 353
Local completeness 354
Two l-complete variants of Ekeland principle 355
The l-complete versions of Ekeland principle face to the l-complete
version of Daneš drop theorem 358
I. Ekeland principle in uniform spaces 361
Introduction 362
Notations 362
Uniform space 363
The topology of a uniform space 364
Pseudo-distance 368
Family of quasi-distances 369
Ekeland principle in uniform spaces (families of quasi-distances) 371
Ekeland principle in uniform spaces (generalized families of quasi-
distances) 377
Generalized family of quasi-distances 377
Minimal point theorem 378
J. Ekeland principle face to the w-distance 382
10. Ekeland principle and Caristi - Kirk theorem in
probabilistic metric spaces 391
A. Menger PM-space 391
Distribution function 391
t-norm 392
Menger PM-space 392
B. Caristi - Kirk theorem in probabilistic metric spaces 396
C. Ekeland principle in probabilistic metric spaces 398
Chapter II. Smooth perturbed variational principles 403
1. Borwein - Preiss principle 405
2. Deville - Godefroy - Zizler principle 417
3. Ghoussoub - Maurey theorems 427
4. Generalization and unification of the Ekeland and Borwein -
Preiss principles 445
Annex 459
Differential manifolds 459
Finsler manifolds 477
Riemann manifolds 482
Bibliography 487
Additional bibliography (with brief presentations) 495
Index 521
INTRODUCTION
In the frame of Variational Calculus, the elementary proposition
“If : X R , X real normed space, has in x0 a local minimum point (hence in particular a global minimum point) and it is Gâteaux differentiable at x0 , then (x 0) = 0” (x0 is critical point)
is called variational principle ([30], 1; w comes from weak).
This is the reason why the neighbour propositions, for instance those in which X is replaced by a metric space, or in which the statement “(x0) = 0” is replaced by “, > 0 any“ etc, are called variational principles (perturbed). The adjective “perturbed” is imposed by the fact that not the function is minimized, but a function of the form + (Ekeland), or of more general form + (Borwein - Preiss), or of even more general form + f (Deville- Godefroy - Zizler), f having some given properties (the second term is the perturbation function).
The Ekeland principle is a perturbed variational principle discovered in 1972 ([30], 1) and nowadays, after more than 30 years, it was proved to be, and this monograph will strongly support this, the foundation of the modern Variational Calculus (see, for instance, the minimax theorems in Banach spaces or in the Finsler manifolds, in which the key step of demonstration is made by the application of the Ekeland principle).
As referring the applications, these are numerous and various: the geometry of Banach spaces, nonlinear analysis, differential equations and partial differential equations, global analysis, probabilistic analysis, differential geometry, fixed point theorems, nonlinear semigroups, dynamical systems, optimization, mathematical programming, optimal control.
Finally, we cannot close this INTRODUCTION without the confession of Ekeland ([30], 4):
“The grandfather of these all is the celebrated 1961 theorem of Bishop and Phelps that the set of continuous linear functionals on a Banach space E, which attain their maximum on a prescribed non void closed convex bounded subset X E, is norm-dense in E*”.
This Bishop-Phelps theorem can be found in 2.35, Chapter I, 2.
*
* *
All the normed spaces that appear in this monograph are real.
Let f : X ( , + ] be given. The domain of f , dom f , is
dom f {x X : f ( x ) < +}.
f is proper dom f .
N will denote the set of integer numbers 1.
Both for the functions and for the sequences will be used the terms increasing and strictly increasing, decreasing and strictly decreasing instead of nondecreasing and increasing respectively nonincreasing and decreasing.
BIBLIOGRAPHY
[1] Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and applications, 1973, J. Functional Anal. 14, 349-381.
[2] Aubin J. P., Ekeland I., Applied nonlinear analysis, 1984, John Wiley and Sons, New York Chichester Brisbane Toronto Singapore.
[3] Bates P. W., Ekeland I., A saddle point theorem, 1980, Differential equations, Academic Press, 123-126.
[31] Benbrik A., Mbarki A., Lahrech S., Ouhab A., Ekeland ’s principle for vector-valued maps based on the characterization of uniform spaces via families of generalized quasi-metrics, 2006, Lobachevskii Journal of Mathematics, vol. 21, 33-44.
[4] Bishop E., Phelps R. R., The support functional of a convex set, 1963, Convexity (Klee, ed.), Proc. Sympos. Pure Math., vol. 7, 27-35, Amer. Math. Soc., Providence, R.I.
[5] Borwein J. M., Giles J. R., The proximal normal formula in Banach spaces, 1987, Trans. Amer. Math. Soc. 302, 371-381.
[6] Borwein J. M., Preiss D., A smooth variational principle with applications to subdif-ferentiability and to differentiability of convex functions, 1987, Transactions of the Amer. Math. Soc., vol. 303, No. 2, 517-527.
[7] Borwein J. M., Strojwas H.M., Subderivatives and non-smooth analysis, 1987, Canadian Journal of Math., 39, 428-472.
[8] 1) Brezis H., Analyse fonctionnelle, 1992, Masson, Paris Milan Barcelone Bonn.
2) Brezis H., The Ambrosetti-Rabinowitz MPL via Ekeland ’s minimization principle (Manuscript).
[9] Brezis H., Nirenberg L., Remarks on finding critical points, 1991, Comm. Pure and Appl. Math. 44, No. 8-9, 939-963.
[10] Brezis H., Browder F., A general ordering principle in nonlinear functional analysis, 1976, Advances in Math. 21, 355-364.
[11] Browder F. E., Normal solvability for nonlinear mappings into Banach spaces, 1971, Bull. Amer. Soc. 77, 73-77.
[12] Cammaroto F., Chinni A., A complement to Ekeland ’s variational principle in Ba-nach spaces, 1996, Bull. of the Polish Academy of Sciences, vol. 44, No. 1.
[13] Cammaroto F., Chinni A., Sturiale G., On an extension of Ekeland ’s principle for vector-valued functions, 1998, Optimization, vol. 43, 19-28.
[14] Caristi J., Fixed point theorems for mappings satisfying inwardness conditions, 1976, Trans. Amer. Math. Soc., 215, 241-251.
[15] Caristi J., Kirk W. A., Geometric fixed point theory and inwardness conditions in The geometry of metric and linear spaces, 1975, Lecture notes in Math., 490, 74-83 Springer Verlag, Berlin Heidelberg New York.
[16] Chang K. C., Variational methods for non-differentiable functionals and their applications to partial differential equations, 1981, J. Math. Anal. Appl. 80, 102-129.
[17] Chang S. S., Cho I. J., Kim J. K., Ekeland ’s variational principle and Caristi’s coincidence theorem for set-valued mappings in probabilistic metric spaces, 1996, Periodica Mathematica Hungarica, vol. 33 (2), 83-92.
[18] Chang S. S., Chen Y. Q., Guo J. L., Ekeland ’s variational principle and Caristi’s fixed point theorem in probabilistic metric spaces, 1991, Acta Math. Appl. : Sinica 3, 217-230.
[19] Chen G. Y., Huang X. X., Ekeland ’s variational principle for set-valued mappings, 1993, Math. Meth. for Oper. Res., 48, 181-186, Springer Verlag.
[20] 1) Clarke F. H., Optimization and non-smooth analysis, 1983, Canadian Math. Society.
2) Clarke F. H., A new approach to Lagrange multipliers, 1976, Math. Oper. Res. 1, 165-174.
[21] Constantin G., Istrătescu I., Elemente de analiză probabilistă şi aplicaţii, 1981, Editura Academiei Române, Bucarest.
[22] Costa D. G., Gonçalves J. V. A., Critical point theory for non-differentiable functio-nals and applications, 1990, J. of Math. Anal. and Appl., 153, 470-485.
[23] 1) Crandall M. G., Lions P. L., Viscosity solutions of Hamilton-Jacobi equations, 1983, Trans. Amer. Math. Soc. 277, 1- 42.
2) Crandall M. G., Lions P. L., Hamilton-Jacobi equations in infinite dimensions, I + + II + III, J. Funct. Anal. 62 (1985), 379-398 + 65 (1986), 368-405 + 68 (1986), 214-247.
[24] Dancs S., Hegedüs M., Medvegyev P., A general ordering and fixed point principle
in complete metric space, 1983, Acta Sci. Mathem. (Szeged), vol. 46, 381-388.
[25] Daneš J., A geometric theorem useful in nonlinear functional analysis, 1972, Boll. Un. Math. Ital. 6, 369-375.
[26] Deimling K., Nonlinear functional analysis, 1985, Springer Verlag, Berlin Heidel-berg New York Tokyo.
[27] 1) Deville R., Godefroy G., Zizler V., A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions, 1993, J. of Func. Anal. 111, 197-212.
2) Deville R., Godefroy G., Zizler V., Smoothness and renormings in Banach spaces, 1992, Monographs and Survey series, Longman, No. 64.
[28] Diestel J., Geometry of Banach spaces, 1975, Lecture Notes in Math., vol. 485, Springer Verlag.
[29] Dugundji J., Topology, 1973, Allyn and Bacon, Boston.
[30] 1) Ekeland I., On the variational principle, 1972, Cahiers de mathématique de la décision, No. 7217, Université Paris.
2) Ekeland I., On the variational principle, 1974, J. Math. Anal. and Appl. 47, 324-353.
3) Ekeland I., The Hopf-Rinow theorem in infinite dimension, 1978, J. Differential Geometry 13, 287-301.
4) Ekeland I., Nonconvex minimization problems, 1979, Bull. Amer. Math. Soc. 1, 443-474.
5) Ekeland I., Convexity methods in hamiltonian mechanics, 1990, Springer Verlag.
6) Ekeland I., Temam R., Analyse convexe et problèmes variationnels, 1974, Dunod, Gauthier-Villars, Paris Bruxelles Montréal.
7) Ekeland I., Lebourg G., Generic Fréchet differentiability and perturbed optimization problems in Banach spaces, 1976, Trans. Amer. Math. Soc. 224, 193-216.
[301] Fang J.-X., The variational principle and fixed point theorem in certain topologi-
cal spaces, 1996, J. Math. Anal. Appl., 202: 398-412. MR 97d: 54070.
[31] 1) Fenchel W., On conjugate convex functions, 1949, Canad. J. Math. 1, 73-77.
2) Fenchel W., Convex cones, sets and functions, 1953, Notes de cours polycopiées, Princeton University.
[32] de Figueiredo D. G., Lectures on the Ekeland variational principle with applications and detours, 1987, Springer Verlag, Berlin Heidelberg New York Tokyo.
[321] Georgiev P. G., The strong Ekeland variational principle, the strong drop theorem
and applications, 1988, J. Math. Anal. Appl., 131, 1-21.
[33] Gerth (Tammer) Chr., Weidner P., Nonconvex separation theorems and some applications in vector optimization, 1990, J. of optimization theory and applications, vol. 67, No. 2, 297-320.
[34] Ghoussoub N., Duality and perturbation methods in critical point theory, 1993, Cambridge University Press.
[35] Göpfert A., Tammer Chr., Zălinescu C., On the vectorial Ekeland ’s variational principle and minimal points in product spaces, 2000, Nonlinear Analysis 39, 909-922.
[351] 1) Hamel A., Phelp’s lemma, Daneš drop theorem and Ekeland ’s principle in local-
ly convex spaces, 2003, Proc. Amer. Math. Soc., vol. 131, 3025-3038.
2) Hamel A., Equivalents to Ekeland ’s variational principle in uniform spaces, 2005, Nonlinear Analysis 62, 913-924.
[352] Hiriart-Urruty J. B., New concepts in nondifferentiable programming, 1979, Bull.
Soc. Math. France 60, 57-85.
[36] Hofer H., A geometric description of the neighbourhood of a critical point given by the mountain pass theorem, 1985, J. Lond. Math. Soc. 31, 566-570.
[37] Isac G., The Ekeland principle and the Pareto ε-efficiency, 1996, Lecture Notes in Economics and Mathematical Systems, vol. 432, 148-163, Springer Verlag, Berlin.
[38] Ishii H., Perron’s method for Hamilton-Jacobi equations, 1987, Duke Math. J., 55, 369-384.
[381] Kada O., Suzuki T., Takahashi W., Nonconvex minimization theorems and fixed
point theorems in complete metric spaces, 1996, Math. Japonica 44, 381-391.
[382] Kelly J. L., General topology, 1957, D. Van Nostrand Company, Inc. Princeton, New Jersey Toronto London New York.
[39] Khank Ph. Q., On Caristi-Kirk’s theorem and Ekeland ’s variational principle for Pareto extrema, 1989, Bull. of the Polish Acad. of Sc. Math., vol. 37, No. 1- 6.
[391] Köthe G., Topologische lineare Räume I, 1966, Springer Verlag , Berlin.
[40] Larman D. G., Phelps R. P.,Gâteaux differentiability of convex functions on Banach spaces, 1979, J. London Math. Soc. 20, 115-127.
[41] Li Yongxin, Shi Shuzhong, A generalization of Ekeland ’s variational principle and its Borwein-Preiss smooth variant, 2000, J. of Math. Anal. and Appl., 246, 308-319.
[42] Lindenstrauss J., Preiss D., On Fréchet differentiability of Lipschitz maps between Banach spaces, 2003, Annals of Mathematics, 157, 257-288.
[43] Luc D. T., Theory of vector optimization, 1989, Lecture Notes in Economics and Mathematical Systems 319, Springer Verlag, Berlin Heidelberg New York.
[44] Mawhin J., Problèmes de Dirichlet variationnels non linéaires, 1987, Les Presses de L’Université de Montréal.
[45] Mawhin J., Willem M., Critical points theory and Hamiltonian Systems, 1989, Springer Verlag, New York Berlin Heidelberg London Paris Tokyo.
[46] Meghea I., Minimax theorem, Mountain Pass theorem and Saddle Point theorem in β-differentiability, 2003, Commun. Appl. Nonlinear Anal., No. 1, 55-66.
[47] Meghea C., Meghea I., Differential Calculus and Integral Calculus, vol. I, Editura Tehnică, 1997, Bucarest; vol. II, Editura Tehnică, 2000, Bucarest; vol. III, Editura Printech, 2002, Bucarest.
[48] Menger K., Statistical metrics, 1942, Proc. Nat. Acad. Sc. USA 28, 535-537.
[49] Milnor J., Morse theory, 1969, Princeton University Press.
[50] Moreau J. J., Fonctionnelles convexes, 1966, Séminaire Équations aux dérivées partielles, Collège de France.
[51] 1) Németh A. B., The nonconvex minimization principle in ordered regular Banach spaces, 1981, Mathematica (Cluj), 23, 43-46.
2) Németh A. B., A nonconvex vector-minimization problem, 1986, Nonlinear Analysis, Theory, Methods and Applications, 10, No. 7, 669-678.
3) Németh A. B., Ekeland variational principle in ordered abelian groups, 2001, Nonlinear Anal. Forum 6(2), 299-312.
[52] Oettli W., Théra M., Equivalents of Ekeland ’s variational principle, 1993, Bull. Austral. Math. Soc., vol. 48, 385-392.
[53] Palais R. S., Ljusternik-Schnirelmann theory on Banach manifolds, 1966, Topology, 5, 115-132.
[54] 1) Park S., On extensions of the Caristi-Kirk fixed point theorem, 1983, J. Koreean Math. Soc., vol. 19, No. 2.
2) Park S., On generalizations of the Ekeland type variational principles, 2000 Nonlinear Analysis, 39, 881-889.
[55] Penot J. P., The drop theorem, the petal theorem and Ekeland ’s variational principle, 1986, Nonlinear Analysis, Theory, Methods and Applications, vol. 10, No. 9, 813-822.
[56] 1) Phelps R. R., Support cones in Banach spaces and their applications, 1974, Advances in Mathematics, 13, 1-19.
2) Phelps R. R., Convex functions, monotone operators and differentiability, 1993, Lecture Notes in Mathematics, Second edition, Springer Verlag, Berlin Heidelberg.
[57] Preiss P., Differentiability of Lipschitz functions on Banach spaces, 1990, J. Funct. Anal. 91, 312-345.
[571] 1) Qiu J.-H., Local completeness and drop theorem, 2002, J. Math. Anal. Appl. 266, 288-297.
2) Qiu J.-H., Ekeland ’s variational principle in locally complete spaces, 2003, Math. Nachr. 257, 55-58.
3) Qiu J.-H., Local completeness, drop theorem and Ekeland ’s variational princi-ple, 2005, J. Math. Anal. Appl. 311, 23-39.
[58] 1) Rabinowitz P. H., Some minimax theorems and applications to nonlinear partial differential equations, 1978, Nonlinear Analysis, Academic Press, 161-177.
2) Rabinowitz P. H., Some critical point theorems and applications to semilinear elliptic partial differential equations, 1978, Ann. Scuola Norm. Sup. Pisa Ser. IV, 5, 161-177.
[59] 1) Rockafellar R. T., Convex Analysis, 1970, Princeton University Press.
2) Rockafellar R. T., Generalized directional derivatives and subgradients of non-convex functions, 1980, Can. J. Math. 32, 257-280.
3) Rockafellar R. T., Directionally Lipschitzian functions and subdifferential calculus, 1979, Proc. London Math.. Soc. (3) 39, 331-355.
[60] Schaefer H., Topological vector spaces, 1971, Springer Verlag, third printing, Berlin Heidelberg New York.
[61] Schweizer B., Sklar A., Statistical metric spaces, 1960, Pacific J. Math. 10, 323-334.
[62] Schweizer B., Sklar A., Thorp E., The metrization of statistical metric spaces, 1960, Pacific J. Math. 10, 673-675.
[63] Schweizer B., Sklar A., Probabilistic metric spaces, 1983, North Holland.
[64] Shen Jie Li, Hiao Qi Yang, Gung-Ya Chen, Vector Ekeland ’s variational principle, 2000, Vector variat. ineq. and vector equil., 321-333, Kluiver Academic Publishers.
[65] Shi Shuzhong, Ekeland ’s variational principle and the Mountain pass lemma, 1985, Acta mathematica Sinica, New Series, vol. I, No. 4, 348-355.
[66] Siegel J., A new proof of Caristi’s fixed point theorem, 1977, Proc. Amer. Math. Soc. 66, 54-56.
[67] Sullivan F., A characterization of complete metric spaces, 1981, Proc. of the Amer. Math. Soc., vol. 83, No. 2, October.
[68] Szulkin A., Critical point theory of Ljusternik-Schnirelmann type and applications to partial differential equations, 1989, Sem. Math. Sup., Presses Univ. Montréal.
[69] Takahashi W., Existence theorems generalizing fixed point theorems for multivalued mappings in Fixed point theory and applications (J. B. Baillon and M. Théra, Editors), 1991, Pitman Research Notes in Math. 252 (Longmann, Harlow), 397-406.
[70] Tammer Chr., A generalization of Ekeland ’s variational principle, 1992, Optimiza-tion, 25, 129-141.
[701] Truong Xuan Duc Ha, Variants of the Ekeland variational principle for a set-valu-
ed map involving the Clarke normal cone, 2006, J. Math. Anal. Appl., 316, 346-356.
[71] 1) Zhong Cheng-Kui, On Ekeland ’s variational principle and a minimax theorem, 1997, J. of Math. Anal. and Appl. 205, 239-250.
2) Zhong Cheng-Kui, A generalization of Ekeland ’s variational principle and appli-cation to the study of the relation between the weak P. S. condition and coercivity, 1997, Nonlinear Anal., Theory, Methods and Applications, vol. 29, No. 12, 1421-1431, Elsevier Science Ltd.